• 系统生物学选讲

  • 发布日期:2025-01-04 16:04    点击次数:145
    系统生物学选讲(2024春季学期)   (课号:08411207;学分:3) 主持人:汤超   授课老师:齐志,林一瀚,宋晨,罗春雄,林杰,李志远,汤超,张磊,魏平,曾泽贤, 来鲁华,韩敬东 助教:杨泽若 ([email protected]) 时间:周二15:10-17:00 (第7-8节课) 地点:吕志和楼B101   本课以深度文献阅读为主,重点介绍生物学中理论与实验相结合而产生的概念、原理、方法,及其当前的发展趋势和面临的挑战。每堂课针对一个方面,深入讨论一篇文章,适当参考第二篇文章。学生在课前应仔细阅读要讨论的文章,并在课堂上积极参与讨论。指导老师介绍背景知识,启发、引导讨论。 课程涉及的内容包括:生物系统中的随机性和噪声、双稳态、协同性、鲁棒性、能耗与精确性,细菌生长中的定量规律,图灵斑图,定量神经生物学,合成生物学,从生物网络的角度来理解疾病、衰老及药物相互作用等。本课为定量生物学中心研究生必修课。欢迎其它院系的研究生及本科生选修。   参考书:Alberts et al. Molecular Biology of the Cell. Hartl and Jones. Genetics: Analysis of Genes and Genomes. Alon. An introduction to systems biology: design principles of biological circuits. 课程网站: 评分方式: 阅读报告40%,  课堂参与30%,Project 30% 阅读报告:每堂课开始前提交关于该课将要讨论的文章的阅读报告,内容可以包括:该文章讨论了什么科学问题,用了什么方法,得到了什么结论,有什么意义,对你有什么启发,你有什么问题等 。一页纸左右。 课堂参与:发言,提问,回答问题,互动 ,感想,体会,辩论,上黑板讲解、推公式等 Project:学生自己分组(3-5人)。其中两组讲最后两次课,其它组自选一个project来present ,不能讲与自己研究有关的内容。   课程安排 Class 1: Course introduction(汤超)2月20日   Class 2: All-or-none transition I - Cooperativity(宋晨)2月27日 ·       Monod J, Wyman J, and Changeux J-P. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12: 88-118. (上述文献较长,故只推荐这一篇,建议精读该文献的第1、2、4小节,其它内容(第3、5小节)可略读)   Class 3: Microbial community(李志远)3月5日 ·       Goldford, Joshua E., et al. Emergent simplicity in microbial community assembly. 2018. Science 361.6401: 469-474. ·       Hu, Jiliang, et al.  Emergent phases of ecological diversity and dynamics mapped in microcosms. 2022.  Science 378.6615: 85-89.   Class 4: All-or-none transition II - Bistability(罗春雄)3月12日 ·       Novick A, Wiener M. 1957. Enzyme induction as an all-or-none phenomenon. PNAS 43: 553-66.       ·       Paul J. Choi, Long Cai, Kirsten Frieda, X. Sunney Xie. 2008. A Stochastic Single-Molecule Event Triggers Phenotype Switching of a Bacterial Cell. Science 322: 442-5. Class 5: DNA-Protein Interactions(齐志)3月19日 ·       Wang, F. et al. The promoter-search mechanism of Escherichia coli RNA polymerase is dominated by three-dimensional diffusion. Nat. Struct. Mol. Biol. 20: 174-181 (2013). ·       Riggs, A. D., Bourgeois, S. & Cohn, M. The lac repressor-operator interaction. 3. Kinetic studies. J. Mol. Biol. 53: 401-417 (1970).   Class 6:Bacterial growth law(林杰)3月26日 (细读第一篇) ·       Scott M, Gunderson CW, Mateescu EM, Zhang Z, Hwa T. 2010. Interdependence of cell growth and gene expression: origins and consequences. Science 330: 1099-1102 ·       Scott M, Klumpp S, Mateescu EM, Hwa T. 2014. Emergence of robust growth laws from optimal regulation of ribosome synthesis. Molecular Systems Biology 10:747 ·       Wu C, Balakrishnan R, Braniff N, Mori M, Manzanarez G, Zhang Z, Hwa T. 2022. Cellular perception of growth rate and the mechanistic origin of bacterial growth law. PNAS 119 (20) e2201585119 Class 7: Gene regulatory network inference and validation(林一瀚)4月2日 Aibar et al. 2017. SCENIC: single-cell regulatory      network inference and clustering. Nat. Methods 14: 1083–1086 Replogle et al. 2022. Mapping information-rich genotype-phenotype landscapes with genome-scale Perturb-seq. Cell 185:2559–2575   Class 8: Energy-accuracy relation(汤超)4月9日 Hopfield JJ. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71: 4135-9. Paul François et al. 2013. Phenotypic model for early T-cell activation displaying sensitivity, specificity, and antagonism. PNAS.   Class 9: Turing Pattern(张磊)4月16日 Kondo, S., & Miura, T.  (2010). Reaction-diffusion model as a framework for understanding  biological pattern formation. Science, 329: 1616-1620. J. D. Murray, Mathematical Biology II (Springer Verlag, Berlin, 2003. Chapter 2: Spatial Pattern Formation with Reaction Diffusion Systems   Class 10: Synthetic Biology(魏平)4月23日 ·       Potvin-Trottier, L., Lord, N. D., Vinnicombe, G., Paulsson, J. Synchronous long-term oscillations in a synthetic gene circuit. Nature 2016, 538, 514. ·       Elowitz M, Leibler S. 2000. A Synthetic Oscillatory Network of Transcriptional Regulators. Nature 403: 335-8.   Class 11: Cancer genomics(曾泽贤) 5月7日 ·       Wang X, Tokheim C,et al.  2021. In vivo CRISPR screens identify the E3 ligase Cop1 as a modulator of macrophage infiltration and cancer immunotherapy target. Cell 184(21):5357-5374. ·       Yu J, Green MD, et al. 2021. Liver metastasis restrains immunotherapy efficacy via macrophage-mediated T cell elimination. Nat Med 27(1):152-164.   Class 12: Disease and drug networks(来鲁华)5月14日 (讨论时以第一篇文章为主,兼顾第二篇) ·        Behar M, Barken D, Werner SL, Hoffmann A. 2013. The dynamics of signaling as a pharmacological target. Cell 155: 448-461. ·        Cheng QJ, Ohta S, Sheu KM, Spreafico R, Adelaja A, Taylor B, Hoffmann A. NF-κB dynamics determine the stimulus specificity of epigenomic reprogramming in macrophages.  2021. Science 372: 1349-1353. ·        Yang K et al. 2008. Finding multiple target optimal intervention in disease- related molecular network. Mol. Sys. Biol. 4:228.   Class 13: Systems biology of aging and development(韩敬东) 5月21日 (任选)              ·       Heckenbach, I., et al., Nuclear morphology is a deep learning biomarker of cellular senescence.Nature Aging, 2022. 2(8): p. 742-755.              ·       Zhou Z. et al. Engineering longevity—design of a synthetic gene oscillator to slow cellular aging, Science 380, 376–381 (2023)   Class 14: Robustness(学生)5月28日       ·       Barkai N, Leibler S. 1997. Robustness in simple biochemical networks. Nature 387: 913-7.       ·       Li F, Long T, Lu Y, Ouyang Q, and Tang C. 2004. The yeast cell-cycle network is robustly designed. Proc Natl Acad Sci USA. 101: 4781–4786.   Class 15: Mutation: lessons from phage(学生)6月4日      ·       Luria SE, Delbruck M. 1943. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 28: 491-511.      ·       The phage group. https://en.wikipedia.org/wiki/Phage_group Project presentation: 6月11日